

- 1 General information
- 2 ABONTM K2 Synthetic Cannabinoids Drug Screen Test

General information

Alere Marijuana

Marijuana has a long history of medicinal and recreational use, and is today the most widely produced and consumed illicit substance worldwide.

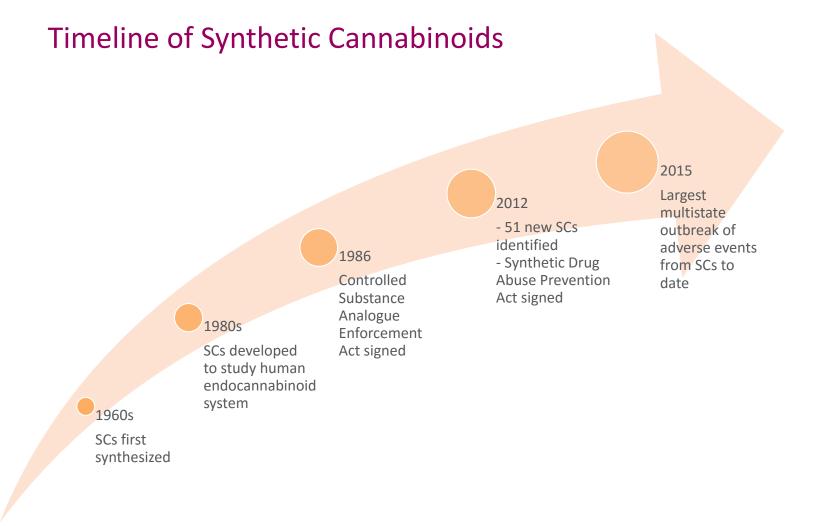
^{1.} Seely K A, Lapoint J, Moran J H, et al. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39(2):234-243.

FOR EXTERNAL USE. NOT FOR PRINT OR DISTRIBUTION.

- Synthetic cannabinoids refer to a growing number of man-made mind-altering chemicals.
- These chemicals are called cannabinoids because they are related to chemicals found in the marijuana plant.
- Because of this similarity, synthetic cannabinoids are sometimes misleadingly called "synthetic marijuana" (or "fake weed"), and they are often marketed as "safe," legal alternatives to that drug.
- In fact, they may affect the brain much more powerfully than marijuana; their actual effects can be unpredictable and, in some cases, severe or even life-threatening.

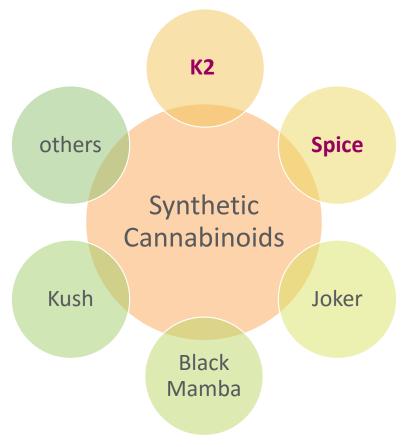
^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

Why are they called Synthetic Cannabinoids?


- Synthetic cannabinoids act on the same brain cell receptors as delta-9-tetrahydrocannabinol (THC), the mind-altering ingredient in marijuana.
- These man-made mind-altering chemicals are nevertheless commonly absorbed by smoking and users often report effects similar to those of *Cannabis*:

Reddened conjunctiva
Tachycardia
Dry mouth
Altered perceptions
Mood changes

- 2. Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids
- 3. Moran C L, Le V H, Chimalakonda K C, et al. Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine[J]. Analytical Chemistry, 2011, 83(11):4228-36.


^{4.} Synthetic Cannabinoids: Information and Guidance for Clinicians, Clinician Outreach and Communication Activity (COCA) Call March 31, 2016

- For several years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and through the Internet.
- Because the chemicals used in them have a high potential for abuse and no medical benefit, authorities have made it illegal to sell, buy, or possess some of these chemicals.
- However, manufacturers try to sidestep these laws by changing the chemical formulas in their mixtures.
- Easy access and the belief that synthetic cannabinoid products are "natural" and therefore harmless have likely contributed to their increase use among young people.
- Another reason for their use is that standard drug tests cannot easily detect many of the chemicals used in these products.

^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

Manufacturers sell these herbal incense products in colorful foil packages and sell similar liquid incense products, like other e-cigarette fluids, in plastic bottles. They market these products under a wide variety of specific brand names:

^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

Several Series and its origin(people or place)

JWH- XXX

• John William Huffman

AM-XXX

Alexandros Makriyannis

HU-XXX

Hebrew University

CP-XXX

Pfizer

^{4.} Synthetic Cannabinoids: Information and Guidance for Clinicians, Clinician Outreach and Communication Activity (COCA) Call March 31, 2016

Synthetic cannabinoids fall into 7 major structural groups:

Naphthoylindoles (e.g. JWH-018, JWH-073) Naphthylmethylindoles (JWH-175, JWH-184, JWH-185, JWH-199) Naphthoylpyrroles (JWH-145, JWH-146, JWH-147, etc)

^{5.} Barnes A J, Young S, Spinelli E, et al. Evaluation of a homogenous enzyme immunoassay for the detection of synthetic cannabinoids in urine[J]. Forensic Science International, 2014, 241C(8):27-34.

How Synthetic Cannabinoids are used:

- Usually smoked.
- Can be vaped, ingested, insufflated(snorted)

^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

Synthetic cannabinoid users report some effects similar to those produced by marijuana:

- Elevated mood.
- Relaxation
- Altered perception-awareness of surrounding objects and condition
- Symptoms of psychosis
 - Extreme anxiety
 - Confusion
 - paranoia—extreme and unreasonable distrust of others
 - hallucinations—sensations and images that seem real though they are not

^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

Other effects caused by Synthetic Cannabinoids:

- Rapid heart rate
- Vomiting
- Violent behavior
- Suicidal thoughts

Synthetic cannabinoids can also raise blood pressure and cause reduced blood supply to the heart, as well as kidney damage and seizures. Use of these drugs is associated with a rising number of deaths.

^{2.} Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids

ABONTM **K2 Synthetic Cannabinoids Drug Screen Test**

Alere ABONTM K2 Drug Screen Test

Product Description	ABON [™] K2 Synthetic Cannabinoids Drug Screen Test		
Intended Use	Lateral flow immunoassays for the specific, qualitative detection of synthetic cannabinoids(For JWH-018) in human urine		
Technology	Competitive, lateral –flow immunoassay with colloidal gold as the visual indicator		
Test Format	Single test device (102) and panel 1x4		
Specimen	Human Urine		
Time to Result	5 minutes		
Storage	2-30 °C		
Shelf Life	24 months		
Kit Size	Single test device (102)	Panel 1x4	
	40 tests	25 tests	
Catalog Number	DJW-102	DOA-124 to DOA-1104	
Cutoff Value	20 ng/mL		

Connection between K2 and JWH:

K2 is one of the most common brand name of synthetic cannabinoids. JWH is main component of K2.

What is JWH?

Some of the first synthetic cannabinoids detected in Spice and K2 were synthesized and named after John W. Huffman, a medicinal chemist at Clemson University who was part of a NIDA funded research project to evaluate the therapeutic potential of many synthetic cannabinoids.

^{5.} Seely K A, Lapoint J, Moran J H, et al. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39(2):234-243.

FOR EXTERNAL USE. NOT FOR PRINT OR DISTRIBUTION.

Why test JWH?

- The "JWH" series of synthetic cannabinoids evolved from a computational melding of the chemical structural features of Δ9-THC with previously developed aminoalkylindoles.
- Today, the JWH series of cannabinoids are arguably the dominant cannabinoids detected in K2.
- JWH-018 (1-penthyl-3-(1napthoyl)indole) was one of the first compounds to be abused and probably selected because the compound is easily synthesized and has high pharmacological activity

^{5.} Seely K A, Lapoint J, Moran J H, et al. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39(2):234-243.

FOR EXTERNAL USE. NOT FOR PRINT OR DISTRIBUTION.

Alere ABON[™] K2 Drug Screen Test

Format

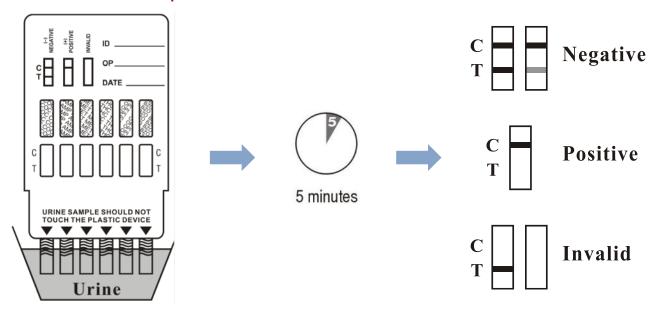
Single device DJW-102

Panel 1x4

Alere Urine Tests – Single Strip & Device

Test Procedure & Interpretation of results

Format	Test Procedure	Interpretation of Results			
Format		Positive	Negative	Invalid	
Device Test	3 Drops of Urine	Ст	C C T	C T T	


Points to be noted

- 1. Avoid trapping air bubbles in the specimen well (S) of the device.
- 2. Read time is 5 minutes. The result should not be interpreted after 10 minutes.
- 3. Confirm that the control line has formed, then interpret the drug test lines.
- 4. The shade of color in the line region (T) may vary, but it should be considered negative whenever there is even a faint colored line.

Alere Urine Tests – Multi Drug Panel

Test Procedure & Interpretation of results

Points to be noted

- 1. Do not pass the arrows on the test panel when immersing the panel.
- 2. Read time is 5 minutes. The result should not be interpreted after 10 minutes.
- 3. Confirm the control line has formed on each strip, then interpret the drug test lines.
- 4. Any indication of a line regardless of color intensity is correctly interpreted as a negative test result.

Alere ABON Drug Test List

Test	Calibrator	Cut-off (ng/mL)
Amphetamine (AMP)	d-Amphetamine	1000/500/300
Barbiturates (BAR)	Secobarbital	300
Benzodiazepines (BZO)	Oxazepam	300/200
Buprenorphine (BUP)	Buprenorphine	10
Cocaine (COC)	Benzoylecgonine	300/150
Cotinine (COT)	Cotinine	100
Fentanyl (FTY)	Norfentanyl	20
Heroin (HRN)	6-Monoacetylmorphine(6-MAM)	10
Ketamine (KET)	Ketamine	1000/100
Marijuana (THC)	11-nor-Δ ⁹ -THC-9 COOH	50
Methadone (MTD)	Methadone	300
Methadone metabolite (EDDP 100)	2-Ethylidene-1,5-dimethyl-3,3-dipheylpyrrolidine (EDDP)	100
Methamphetamine (MET)	d-Methamphetamine	1000/500/300
Methylphenidate(MPH)	Ritalinic Acid	100
Methylenedioxymethamphetamine (MDMA)	d,l-Methylenedioxymethamphetamine	500
Morphine (MOP 300)	Morphine	300
Opiate (OPI 2000)	Morphine	2,000
Oxycodone (OXY)	Oxycodone	100
Phencyclidine (PCP)	Phencyclidine	25
Propoxyphene (PPX)	Propoxyphene	300
K2 Synthetic Cannabinoids	JWH-018 5-Pentanoic acid metabolite	20
Tramadol (TRA)	Tramadol	100
Tricyclic Antidepressants (TCA)	Nortriptyline	1,000

Features	Benefits
Reliability	 Built-in QC verifies the test performed correctly High correlation with laboratory reference method
Fast Results	• 5-10 minutes Test Time
Shelf Life and Storage	 24 months of shelf life from the date of manufacture Room temperature storage of entire kit
Convenience	 No additional equipment and operator training required Easy 1-step Procedure Convenient Visual Interpretation Wide choice of test combinations in multi drug formats

Alere Analytical Specificity

The following table lists the concentration of compounds (ng/mL) that are detected positive in urine by the One Step Drug Screen Test Device (Urine) at 5 minutes.

Item	Concentration	Item	Concentration
JWH-018 5-Pentanoic acid metabolite	20	MAM2201 N-pentanoic acid	50
AM2201 6-hydroxyindole metabolite	3125	JWH-018 5-hydroxypentyl	700
AM2201 N-(4-hydroxypentyl) metabolite	780	JWH-018 N-(4-hydroxypentyl)	600
Clonidine	6250	Ketoprofen	6250
Indomethacin	6250	Zomepirac	3125
JWH-018	3125	UR-144 N-pentanoic acid metabolite	25000
JWH-073 4-butanoic acid metabolite	20	XLR-11 4-Hydroxypentyl metabolite	40000
JWH-073 N-(3-hydroxybutyl)	500	JWH-122 4-hydroxypentyl	10000
JWH-073 4-hydroxybutyl	500	JWH-122 5-hydroxypentyl	5000

Alere Analytical Sensitivity

A drug-free urine pool was spiked with drugs to the concentrations at \pm 50% cut-off and \pm 25% cut-off. The results are summarized below.

Drug Conc.	K2			
(Cut-off range)	Device(DJW-102)		Panel(DOA-1*4)	
	-	+	-	+
0% Cut-off	90	0	90	0
-50% Cut-off	90	0	90	0
-25% Cut-off	72	18	65	25
Cut-off	37	53	22	68
+25% Cut-off	11	79	4	86
+50% Cut-off	0	90	0	90

ABONTM K2 Synthetic Cannabinoids Drug Screen Test has shown High Sensitivity

Alere Reference

- 1. Seely K A, Lapoint J, Moran J H, et al. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39(2):234-243.
- 2. Drug Facts: Synthetic Cannabinoids, https://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids
- 3. Moran C L, Le V H, Chimalakonda K C, et al. Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine[J]. Analytical Chemistry, 2011, 83(11):4228-36
- 4. Synthetic Cannabinoids: Information and Guidance for Clinicians, Clinician Outreach and Communication Activity (COCA) Call March 31, 2016
- 5. Barnes A J, Young S, Spinelli E, et al. Evaluation of a homogenous enzyme immunoassay for the detection of synthetic cannabinoids in urine[J]. Forensic Science International, 2014, 241C(8):27-34.

